Принцип работы шагового двигателя постоянного тока: Устройство, принцип работы и применение шаговых электродвигателей | Полезные статьи

Содержание

устройство, принцип работы, типы, схемы подключения

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое шаговый двигатель, его конструкцию, принцип работы и схемы подключения.

Что такое шаговый двигатель?

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

Преимущества и недостатки шагового электродвигателя

К преимуществам эксплуатации шагового двигателя можно отнести:

  • В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
  • Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
  • Обеспечивает высокую скорость старта, реверса, остановки;
  • Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
  • Для позиционирования шаговому двигателю не требуется обратной связи;
  • Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
  • Сравнительно меньшая стоимость относительно тех же сервоприводов;
  • Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.

К недостаткам применения шагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового агрегата;
  • Существует вероятность утраты контроля из-за отсутствия обратной связи;
  • Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы

Устройство и принцип работы

Рис. 1. Принцип действия шагового двигателя

На рисунке 1 изображены 4 обмотки, которые относятся к статору двигателя, а их расположение устроено так, что они находятся под углом 90º относительно друг друга. Из чего следует, что такая машина характеризуется размером шага в 90º.

В момент подачи напряжения U1 в первую обмотку происходит перемещение ротора на те же 90º. В случае поочередной подачи напряжения U2, U3, U4 в соответствующие обмотки, вал продолжит вращение до завершения полного круга. После чего цикл повторяется снова. Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки.

Типы шаговых двигателей

Для обеспечения различных параметров работы важна как величина шага, на который будет смещаться вал, так и момент, прилагаемый для перемещения. Вариации данных параметров достигаются за счет конструкции самого ротора, способа подключения и конструкции обмоток.

По конструкции ротора

Вращаемый элемент обеспечивает магнитное взаимодействие  с электромагнитным полем статора. Поэтому его конструкция и технические особенности напрямую определяют режим работы и параметры вращения шагового агрегата. Чтобы на практике определить тип шагового мотора, при обесточенной сети необходимо провернуть вал, если ощущаете сопротивление, то это свидетельствует о наличии магнита, в противном случае, это конструкция без магнитного сопротивления.

Реактивный

Реактивный шаговый двигатель не оснащается магнитом на роторе, а выполняется  из магнитомягких сплавов, как правило, его набирают из пластин для уменьшения потерь на индукцию. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полюса статорных обмоток запитываются противоположными парами и создают магнитную силу для перемещения ротора, который двигается от попеременного протекания электрического тока в обмоточных парах.

С переменным магнитным сопротивлением

Весомым плюсом такой конструкции шагового привода является отсутствие стопорящего момента, образуемого полем по отношению к арматуре. По факту это тот же синхронный двигатель, в котором поворот ротора идет в соответствии с полем статора.  Недостатком является снижение величины вращающего момента. Шаг для реактивного двигателя колеблется от  5 до 15°.

С постоянными магнитами

В этом случае подвижный элемент шагового двигателя собирается из постоянного магнита, в котором может быть два и большее количеством полюсов. Вращение ротора обеспечивается притяжением или отталкиванием магнитных полюсов электрическим полем при подаче напряжения в соответствующие обмотки. Для этой конструкции угловой шаг составляет 45-90°.

С постоянным магнитом

Гибридные

Был разработан с целью объединения лучших качеств двух предыдущих моделей, за счет чего агрегат обладает меньшим углом и шагом. Его ротор выполнен в виде цилиндрического постоянного магнита, который намагничен по продольной оси.  Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Такое решение позволило обеспечить отличный удерживающий и крутящий момент.

Устройство гибридного шагового двигателя

 

Преимущества гибридного шагового двигателя заключатся в его высокой точности, плавности и скорости перемещения, малым шагом – от 0,9 до 5°. Их применяют для высококлассных станков ЧПУ, компьютерных и офисных приборах и современной робототехнике. Единственным недостатком считается относительно высокая стоимость.

Для примера разберем вариант гибридных ШД на 200 шагов позиционирования вала. Соответственно каждый из цилиндров будет иметь по 50 зубцов, один из них является положительным полюсом, второй отрицательным. При этом каждый положительный зубец расположен напротив паза в отрицательном цилиндре и наоборот. Конструктивно это выглядит так:

Расположение пазов гибридника

Из-за чего на валу шагового двигателя получается 100 перемежающихся полюсов с отличной полярностью. Статор также имеет зубцы, как показано на рисунке 6 ниже, кроме промежутков между его компонентами.

Рис. 6. Принцип работы гибридного ШД

За счет такой конструкции можно достичь смещения того же южного полюса относительно статора в 50 различных позиций. За счет отличия положения в полупозиции между северным и южным полюсом достигается возможность перемещения в 100 позициях, а смещение фаз на четверть  деления предоставляет возможность увеличить количество шагов за счет последовательного возбуждения еще вдвое, то есть до 200 шагов углового вала за 1 оборот.

Обратите внимание на рисунок 6, принцип работы такого шагового двигателя заключается в том, что при попарной подаче тока в противоположные обмотки происходит подтягивание разноименных полюсов ротора, расположенных за зубьями статора и отталкивание одноименных, идущих перед ними по ходу вращения.

По виду обмоток

На практике шаговый двигатель представляет собой многофазный мотор. Плавность работы в котором напрямую зависит от количества обмоток – чем их больше, тем плавне происходит вращение, но и выше стоимость. При этом крутящий момент от числа фаз не увеличивается, хотя для нормальной работы их минимальное число на статоре электродвигателя должно составлять хотя бы две. Количество фаз не определяет числа обмоток, так двухфазный шаговый двигатель может иметь четыре и более обмотки.

Униполярный

Униполярный шаговый двигатель отличается тем, что в схеме подключения обмотки имеется ответвление от средней точки. Благодаря чему  легко меняются магнитные полюса. Недостатком такой конструкции является использование только одной половины доступных витков, из-за чего достигается меньший вращающий момент. Поэтому они отличаются большими габаритами.

Униполярный ШД

Для использования всей мощности катушки средний вывод оставляют не подключенным. Рассмотрите конструкции униполярных агрегатов, они могут содержать 5 и 6 выводов. Их количество будет зависеть от того, выводится срединный провод отдельно от каждой обмотки двигателя или они соединяются вместе.

Схема а) с различными, б) с одним выводом

Биполярный

Биполярный шаговый двигатель подключается к контроллеру через 4 вывода. При этом обмотки могут соединяться внутри как последовательно, так и параллельно. Рассмотрите пример его работы на рисунке.

Биполярный шаговый двигатель

В конструктивной схеме такого двигателя вы видите с одной обмоткой возбуждения в каждой фазе. Из-за этого смена направления тока требует использовать в электронной схеме специальные драйверы (электронные чипы, предназначенные для управления). Добиться подобного эффекта  можно при помощи включения Н-моста. В сравнении с предыдущим, биполярное устройство обеспечивает тот же момент при гораздо меньших габаритах.

Подключение шагового двигателя

Чтобы запитать обмотки, потребуется устройство способное выдать управляющий импульс  или серию импульсов в определенной последовательности.  В качестве таких блоков выступают полупроводниковые приборы для подключения шагового двигателя, микропроцессорные драйвера. В которых имеется набор выходных клемм, каждая из них определяет способ питания и режим работы.

В зависимости от схемы подключения должны применяться те или другие выводы шагового агрегата.   При различных вариантах подведения тех или иных клемм к выходному сигналу постоянного тока получается определенная скорость вращения, шаг или микрошаг линейного перемещения в плоскости. Так как для одних задач нужна низкая частота, а для других высокая, один и тот же двигатель может задавать параметр за счет драйвера.

Типичные схемы подключения ШД

В зависимости того, какое количество выводов представлено на конкретном шаговом двигателе: 4, 6 или 8 выводов, будет отличаться и возможность использования той или иной схемы их подключения Посмотрите на рисунки, здесь показаны типичные варианты подключения шагового механизма:

Схемы подключения различных типов шаговых двигателей

При условии запитки основных полюсов шаговой машины от одного и того же драйвера, по данным схемам можно отметить следующие отличительные особенности работы:

  • Выводы однозначно подводятся к соответствующим клеммам устройства. При последовательном соединении обмоток увеличивает индуктивность обмоток, но понижает ток.
  • Обеспечивает паспортное значение электрических характеристик. При параллельной схеме увеличивается ток и снижается индуктивность.
  • При подключении по одной фазе на обмотку снижется момент на низких оборотах и уменьшает величину токов.
  • При подключении осуществляет все электрические и динамические характеристики согласно паспорта, номинальный токи. Значительно упрощается схема управления.
  • Выдает куда больший момент и применяется для больших частот вращения;
  • Как и предыдущая предназначена для увеличения момента, но применяется для низких частот вращения.

Управление шаговым двигателем

Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.

Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.

Волновое управление

Полношаговый  — в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.

Полношаговое управление

Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.

Полушаговое управление

Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.

Без контроллера

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Подключение через контроллер однополярного шагового двигателя

Популярные схемы управления ШД

Схема управления от контроллера с дифференциальным выходом

Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.

Схема управления от контроллера с выходом типа «открытый коллектор»

В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.

Простейший драйвер шагового двигателя своими руками

Чтобы собрать схему драйвера в домашних условиях могут пригодиться некоторые элементы от старых принтеров, компьютеров и другой техники. Вам понадобятся транзисторы, диоды, резисторы (R) и микросхема (RG).

Схема простейшего драйвера

Для построения программы руководствуйтесь следующим принципом: при подаче на один из выводов D логической единицы (остальные сигнализируют ноль)  происходит открытие транзистора и сигнал проходит к катушке двигателя. Таким образом, выполняется один шаг.

На основе схемы составляется печатная плата, которую можно попытаться изготовить самостоятельно или сделать под заказ. После чего на плате впаиваются соответствующие детали. Устройство способно управлять шаговым устройством от домашнего компьютера за счет подключения к обычному  USB порту.

Полезное видео

Шаговый двигатель

Дмитрий Левкин

  • Конструкция
  • Характеристики

Предшественником шагового двигателя является серводвигатель.

Шаговые (импульсные) двигатели непосредственно преобразуют управляющий сигнал в виде последовательности импульсов в пропорциональный числу импульсов и фиксированный угол поворота вала или линейное перемещение механизма без датчика обратной связи. Это обстоятельство упрощает систему привода и заменяет замкнутую систему следящего привода (сервопривода) разомкнутой, обладающей такими преимуществами, как снижение стоимости устройства (меньше элементов) и увеличение точности в связи с фиксацией ротора шагового двигателя при отсутствии импульсов сигнала.

Очевиден и недостаток привода с шаговым двигателем: при сбое импульса дальнейшее слежение происходит с ошибкой в угле, пропорциональной числу пропущенных импульсов [2].

Поэтому в задачах, где требуются высокие характеристики (точность, быстродействие) используются серводвигатели. В остальных же случаях из-за более низкой стоимости, простого управления и неплохой точности обычно используются шаговые двигатели.

Шаговый двигатель, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.

Гибридный шаговый электродвигатель

Шаговые двигатели надежны и недороги, так как ротор не имеет контактных колец и коллектора. Ротор имеет либо явно выраженные полюса, либо тонкие зубья. Реактивный шаговый двигатель — имеет ротор из магнитомягкого материала с явно выраженными полюсами. Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Гибридный шаговый двигатель имеет составной ротор включающий полюсные наконечники (зубья) из магнитомягкого материала и постоянные магниты. Определить имеет ротор постоянные магниты или нет можно посредством вращения обесточенного двигателя, если при вращении имеется фиксирующий момент и/или пульсации значит ротор выполнен на постоянных магнитах.

Статор шагового двигателя имеет сердечник с явно выраженными полюсами, который обычно делается из ламинированных штампованных листов электротехнической стали для уменьшения вихревых токов и уменьшения нагрева. Статор шагового двигателя обычно имеет от двух до пяти фаз.

Так как шаговый двигатель не предназначен для непрерывного вращения в его параметрах не указывают мощность. Шаговый двигатель — маломощный двигатель по сравнению с другими электродвигателями.

Одним из определяющих параметров шагового двигателя является шаг ротора, то есть угол поворота ротора, соответствующий одному импульсу. Шаговый двигатель делает один шаг в единицу времени в момент изменения импульсов управления. Величина шага зависит от конструкции двигателя: количества обмоток, полюсов и зубьев. В зависимости от конструкции двигателя величина шага может меняться в диапазоне от 90 до 0,75 градусов. С помощью системы управления можно еще добиться уменьшения шага пополам используя соответствующий метод управления.

    По конструкции ротора выделяют три типа шаговых двигателей:

  • реактивный;
  • с постоянными магнитами;
  • гибридный.

Реактивный шаговый двигатель — синхронный реактивный двигатель. Статор реактивного шагового двигателя обычно имеет шесть явновыраженных полюсов и три фазы (по два полюса на фазу), ротор — четыре явно выраженных полюса, при такой конструкции двигателя шаг равен 30 градусам. В отличии от других шаговых двигателей выключенный реактивный шаговый двигатель не имеет фиксирующего (тормозящего) момента при вращении вала.

Трехфазный реактивный шаговый двигатель
(шаг 30°)

Четырехфазный реактивный шаговый двигатель
(шаг 15°)

Ниже представлены осциллограммы управления для трехфазного шагового двигателя.

Униполярное волновое управление

Биполярное полношаговое управление

Биполярное 6-шаговое управление

Осциллограммы управления для четырехфазного шагового двигателя показаны на рисунке ниже. Последовательное включение фаз статора создает вращающееся магнитное поле за которым следует ротор. Однако из-за того, что ротор имеет меньшее количества полюсов, чем статор, ротор поворачивается за один шаг на угол меньше чем угол статора. Для реактивного двигателя угол шага равен:

,

  • где NR — количество полюсов ротора;
  • NS – количество полюсов статора.

Осциллограммы управления 4-х фазным реактивным шаговым двигателем

Чтобы изменить направление вращения ротора (реверс) реактивного шагового двигателя, необходимо поменять схему коммутации обмоток статора, так как изменение полярности импульса не изменяет направления сил, действующих на невозбужденный ротор [2].

Реактивные шаговые двигатели применяются только тогда, когда требуется не очень большой момент и достаточно большого шага угла поворота. Такие двигатели сейчас редко применяются.

    Отличительные черты:

  • ротор из магнитомягкого материала с явно выраженными полюсами;
  • наименее сложный и самый дешевый шаговый двигатель;
  • отсутствует фиксирующий момент в обесточенном состоянии;
  • большой угол шага.

Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Статор обычно имеет две фазы.

По сравнению с реактивными, шаговые двигатели с активным ротором создают большие вращающие моменты, обеспечивают фиксацию ротора при снятии управляющего сигнала. Недостаток двигателей с активным ротором — большой угловой шаг (7,5—90°). Это объясняется технологическими трудностями изготовления ротора с постоянными магнитами при большом числе полюсов. Если угол фиксации находится в диапазоне от 7,5 до 90 градусов скорее всего это шаговый двигатель с постоянными магнитами нежели гибридный шаговый двигатель.

Обмотки могут иметь ответвление в центре для работы с однополярной схемой управления. Двухполярное управление требуется для питания обмоток без центрального ответвления.

    Таким образом по виду обмоток выделяют два типа шаговых двигателей:

  • униполярный (однополярный),
  • биполярный (двухполярный).

Униполярный (однополярный) шаговый двигатель

Униполярный шаговый двигатель с постоянными магнитами имеет одну обмотку на фазу с ответвлением в центре. Каждая секция обмотки включается отдельно.

Таким образом расположение магнитных полюсов может быть изменено без изменения направления тока, а схема коммутации может быть выполнена очень просто (например на одном транзисторе) для каждой обмотки. Обычно центральное ответвление каждой фазы делается общим, в результате получается три вывода на фазу и всего шесть для обычного двухфазного двигателя.

Легкое управление однополярными двигателями сделало их популярными для любителей, они возможно являются наиболее дешевым способом чтобы получить точное угловое перемещение.

Схема униполярного двухфазного шагового двигателя

Схема биполярного двухфазного шагового двигателя

Биполярный шаговый двигатель

Двухполярные двигатели имеют одну обмотку на фазу. Для того чтобы изменить магнитную полярность полюсов необходимо изменить направление тока в обмотке, для этого схема управления должна быть более сложной, обычно с H-мостом. Биполярный шаговый двигатель имеет два вывода на фазу и не имеет общего вывода. Так как пространство у биполярного двигателя используется лучше, такие двигатели имеют лучший показатель мощность/объем чем униполярные. Униполярный двигатель имеет двойное количество проводников в том же объеме, но только половина из них используется при работе, тем не менее биполярный двигатель сложнее в управление.

Управление шаговым двигателем с постоянными магнитами

Для управления шаговым двигателем на постоянных магнитах к его обмоткам прикладывается сфазированный переменный ток. На практике это почти всегда прямоугольный сигнал сгенерированный от источника постоянного тока. Биполярная система управления генерирует прямоугольный сигнал изменяющийся от плюса к минусу, например от +2,5 В до -2,5 В. Униполярная система управления меняет направление магнитного потока катушки посредством двух сигналов, которые поочереди подаются на противоположные выводы катушки относительно ее центрального ответвления.

    Существует несколько способов управления:

  • волновое,
  • полношаговое,
  • полушаговое.
Волновое управление

Простейшим способом управления шаговым двигателем является волновое управление. При таком управлении в один момент времени возбуждается только одна обмотка. Но такой способ управления не обеспечивает максимально возможного момента.

Положение ротора шагового двигателя при волновом управлении

Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора.

Волновое управление биполярным шаговым двигателем

На рисунке выше представлены схема биполярного шагового двигателя и двухполюсные осциллограммы управления. При таком управлении обе полярности («+» и «-«) подаются на двигатель. Магнитное поле катушки поворачивается за счет того, что полярность токов управления меняется.

Волновое управление униполярным шаговым двигателем

На рисунке выше представлены схема униполярного шагового двигателя и однополюсные осциллограммы управления.Так как для управления униполярным шаговым двигателем требуется только одна полярность это существенно упрощает схему системы управления. При этом требуется генерация четырех сигналов так как необходимо два однополярных сигнала для создания переменного магнитного поля катушки.

Необходимое для работы шагового двигателя переменное магнитное поле может быть создано как униполярным так и биполярным способом. Однако для униполярного управления катушки двигателя должны иметь центральное ответвление.

Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора. Схемы соединения шагового двигателя показаны на рисунке ниже.

Схема 4 выводного биполярного шагового двигателя

Схема 5 выводного униполярного шагового двигателя

Схема 6 выводного униполярного шагового двигателя

Схема 8 выводного шагового двигателя

Шаговый двигатель с 4 выводами может управляться только биполярным способом. 6-выводной двигатель предназначен для управления униполярным способом, несмотря на то, что он также может управляться биполярным способом если игнорировать центральные выводы. 5-выводной двигатель может управляться только униполярным способом, так как общий центральный вывод соединяет обе фазы. 8-выводная конфигурация двигателя встречается редко, но обеспечивает максимальную гибкость. Такой двигатель может быть подключен для управления также как 6- или 5- выводной двигатель. Пара обмоток может быть подключена последовательно для высоковольтного биполярного управления с малыми токами или параллельно для низковольтного управления с большими токами.

    8-выводные двигатели могут быть соединены в нескольких конфигурациях:

  • униполярной;
  • биполярной с последовательным соединением. Больше индуктивность, но ниже ток обмотки;
  • биполярной с параллельным соединением. Больше ток, но ниже индуктивность;
  • биполярной с одной обмоткой на фазу. Метод использует только половину обмоток двигателя при работе, что уменьшает доступный момент на низких оборотах, но требует меньше тока.
Полношаговое управление

Полношаговое управление обеспечивает больший момент, чем волновое управление так как обе обмотки двигателя включены одновременно. Положение ротора при полношаговом управлении показано на рисунке ниже.

Положение ротора шагового двигателя при полношаговом управлении

Полношаговое биполярное управление шаговым двигателем

Полношаговое биполярное управление показанное на рисунке выше имеет такой же шаг как и при волновом управлении. Униполярное управление (не показано) потребует два однополярных управляющих сигнала для каждого биполярного сигнала. Однополярное управление требует менее сложной и дорогой схемы управления. Дополнительная стоимость биполярного управления оправдана когда требуется более высокий момент.

Полушаговое управление

Шаг для данной геометрии шагового двигателя делится пополам. Полушаговое управление обеспечивает большее разрешение при позиционировании вала двигателя.

Положение ротора шагового двигателя при полушаговом управлении

Полушаговое управление — комбинация волнового управления и полношагового управления с питанием по очереди: сначала одной обмотки, затем с питанием обоих обмоток. При таком управлении количество шагов увеличивается в двое по сравнению с другими методами управления.

Полушаговое биполярное управление шаговым двигателем

Гибридный шаговый двигатель был создан с целью объединить лучшие свойства обоих шаговых двигателей: реактивного и с постоянными магнитами, что позволило добиться меньшего угла шага. Ротор гибридного шагового двигателя представляет из себя цилиндрический постоянный магнит, намагниченный вдоль продольной оси с радиальными зубьями из магнитомягкого материала.

Конструкция гибридного шагового двигателя (осевой разрез)

Статор обычно имеет две или четыре фазы распределенные между парами явно выраженных полюсов. Обмотки статора могут иметь центральное ответвление для униполярного управления. Обмотка с центральным ответвлением выполняется с помощью бифилярной намотки.

Гибридный шаговый двигатель (радиальный разрез)

Заметьте что 48 зубьев на одной секции ротора смещены на половину зубцового деления λ относительно другой секции (рисунок ниже). Из-за этого смещения ротор фактически имеет 96 перемежающихся полюсов противоположной полярности.

Ротор гибридного шагового двигателя

Зубья на полюсах статора соответствуют зубьям ротора, исключая отсутствующие зубья в пространстве между полюсами. Таким образом один полюс ротора, скажем южный полюс, можно выровнять со статором в 48 отдельных положениях. Однако зуб южного полюса ротора смещен относительно северного зуба на половину зубцового деления. Поэтому ротор может быть выставлен со статором в 96 отдельных положениях.

Соседние фазы статора гибридного шагового двигателя смещены друг относительно друга на одну четверть зубцового деления λ. В результате ротор перемещается с шагом в четверть зубцового деления во время переменного возбуждения фаз. Другими словами для такого двигателя на один оборот приходится 2×96=192 шага.

    Шаговый гибридный двигатель имеет:

  • шаг меньше, чем у реактивного двигателя и двигателя с постоянными магнитами;
  • ротор — постоянный магнит с тонкими зубьями. Северные и южные зубья ротора смещены на половину зубцового деления для уменьшения шага;
  • полюсы статора имеют такие же зубья как и ротор;
  • статор имеет не менее чем две фазы;
  • зубья соседних полюсов статора смещены на четверть зубцового деления для создания меньшего шага.

    Библиографический список

  • ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
  • Н.И.Волков, В.П.Миловзоров. Электромашинные устройства автоматики: Учеб. для вузов по спец. «Автоматика и телемеханика».- 2-е изд.- М.:Высш.шк., 1986.

Как работает шаговый двигатель

В этой учебной статье вы узнаете, как работает шаговый двигатель. Мы рассмотрим основные принципы работы шаговых двигателей, режимы их работы и типы шаговых двигателей по конструкции. Вы можете посмотреть следующее видео или прочитать написанную статью.

Принцип работы

Шаговый двигатель представляет собой бесщеточный двигатель постоянного тока, который вращается ступенчато. Это очень полезно, потому что его можно точно позиционировать без какого-либо датчика обратной связи, который представляет собой контроллер с разомкнутым контуром. Шаговый двигатель состоит из ротора, который обычно представляет собой постоянный магнит и окружен обмотками статора. По мере того, как мы активируем обмотки шаг за шагом в определенном порядке и пропускаем через них ток, они будут намагничивать статор и создавать электромагнитные полюса, соответственно, которые будут вызывать движение двигателя. Таков основной принцип работы шаговых двигателей.

 

Режимы движения

Существует несколько различных способов управления шаговым двигателем. Первый — это волновой привод или возбуждение с одной катушкой. В этом режиме мы активируем только одну катушку за раз, что означает, что для этого примера двигателя с 4 катушками ротор будет совершать полный цикл за 4 шага.

Далее следует режим полного шага, который обеспечивает гораздо более высокий выходной крутящий момент, поскольку у нас всегда есть 2 активные катушки в данный момент времени. Однако это не улучшает разрешение шагового двигателя, и снова ротор будет совершать полный цикл за 4 шага.

Для увеличения разрешения степпера мы используем режим Half Step Drive. Этот режим фактически является комбинацией двух предыдущих режимов.

Здесь у нас есть одна активная катушка, за которой следуют 2 активные катушки, затем снова одна активная катушка, за которой следуют 2 активные катушки и так далее. Таким образом, в этом режиме мы получаем двойное разрешение при той же конструкции. Теперь ротор совершит полный цикл в 8 тактов.

Однако в настоящее время наиболее распространенным методом управления шаговыми двигателями является микрошаговый. В этом режиме мы подаем переменный регулируемый ток на катушки в виде синусоидальной волны. Это обеспечит плавность хода ротора, уменьшит напряжение деталей и повысит точность шагового двигателя.

Еще один способ увеличить разрешение шагового двигателя — увеличить количество полюсов ротора и количество полюсов статора.

Типы шаговых двигателей по конструкции

По конструкции существует 3 различных типа шаговых двигателей: шаговый двигатель с постоянными магнитами, шаговый двигатель с переменным сопротивлением и гибридный синхронный шаговый двигатель.

Шаговый двигатель с постоянными магнитами имеет ротор с постоянными магнитами, который приводится в движение обмотками статора. Они создают полюса противоположной полярности по сравнению с полюсами ротора, который приводит в движение ротор.

Шаговый двигатель следующего типа с переменным сопротивлением использует ненамагничивающийся ротор из мягкого железа. Ротор имеет зубья, которые смещены относительно статора, и когда мы активируем обмотки в определенном порядке, ротор перемещается соответственно так, чтобы между статором и зубьями ротора был минимальный зазор

Гибридный синхронный двигатель представляет собой комбинацию предыдущие два степпера. Он имеет зубчатый ротор с постоянными магнитами, а также зубчатый статор. Ротор имеет две секции, которые противоположны по полярности, и их зубья смещены, как показано здесь.

Это вид спереди широко используемого гибридного шагового двигателя, который имеет 8 полюсов на статоре, которые активируются 2 обмотками, A и B. Таким образом, если мы активируем обмотку A, мы намагнитим 4 полюса, два из которых будет иметь южную полярность и две из них — северную полярность.

Мы видим, что таким образом зубья роторов совмещены с зубьями полюсов А и не совмещены с зубьями полюсов В. Это означает, что на следующем шаге, когда мы отключим полюса А и активируем полюса В , ротор будет двигаться против часовой стрелки, и его зубья совпадут с зубьями полюсов B.

Если мы продолжим активировать полюса в определенном порядке, ротор будет двигаться непрерывно. Здесь мы также можем использовать различные режимы вождения, такие как волновой привод, полный шаг, полушаговый привод и микрошаг для еще большего увеличения разрешения шагового двигателя.

Рубрики Электротехника

Шаговый двигатель

: основы, типы и работа

 

Что такое шаговый двигатель?

A Шаговый двигатель или 9Шаговый двигатель 0032 представляет собой бесщеточный синхронный двигатель, который делит полный оборот на несколько шагов. В отличие от бесщеточного двигателя постоянного тока, который непрерывно вращается при подаче на него фиксированного напряжения постоянного тока, шаговый двигатель вращается с дискретными углами шага. Поэтому шаговые двигатели изготавливаются с шагом на оборот 12, 24, 72, 144, 180 и 200, что дает угол шага 30, 15, 5, 2,5, 2 и 1,8 градуса на шаг. Шаговый двигатель может управляться как с обратной связью, так и без нее.

 

Рис. 1. Изображение широко используемого бесщеточного шагового двигателя постоянного тока

 

Как работает шаговый двигатель?

Шаговые двигатели работают по принципу электромагнетизма. Вал ротора из мягкого железа или магнита окружен электромагнитными статорами. Ротор и статор имеют полюса, которые могут быть зубчатыми или нет, в зависимости от типа шагового двигателя. Когда на статоры подается питание, ротор перемещается, чтобы выровняться со статором (в случае шагового двигателя с постоянным магнитом) или перемещается, чтобы иметь минимальный зазор со статором (в случае шагового двигателя с переменным сопротивлением). Таким образом, статоры последовательно запитываются, чтобы вращать шаговый двигатель. Получите больше информации о работе шаговых двигателей с помощью интересных изображений на сайте stepper motor Insight.

Рис. 2: Общий обзор внутренней структуры и работы типичного шагового двигателя

Типы шагового двигателя

По строительству Пошаговые двигатели входят в три широких класса:

1. Шаговый двигатель с постоянным магнитом

2.      Шаговый двигатель с переменным сопротивлением

3.      Гибридный шаговый двигатель

Эти три типа подробно описаны в следующих разделах.

 

 

Тип 1: Постоянный магнит

1.     Шаговый двигатель с постоянным магнитом :

Полюса ротора и статора шагового двигателя с постоянными магнитами не зубчатые. Вместо этого ротор имеет чередующиеся северный и южный полюса, параллельные оси вала ротора.

 

Рис. 3: Схема поперечного сечения двухфазного постоянного шагового двигателя

 

Когда статор находится под напряжением, он создает электромагнитные полюса. Магнитный ротор выравнивается вдоль магнитного поля статора. Затем в последовательности подается питание на другой статор, так что ротор движется и выравнивается с новым магнитным полем. Таким образом, подача питания на статоры в фиксированной последовательности приводит к вращению шагового двигателя на фиксированные углы.

 

 

Рис. 4. Схема, поясняющая работу шагового двигателя с постоянными магнитами

 

Разрешение шагового двигателя с постоянными магнитами можно увеличить, увеличив число полюсов ротора или количество фаз.

 

Рис. 5. Рисунок, показывающий способы увеличения разрешения шагового двигателя с постоянными магнитами

 

 

0032 2.      

Шаговый двигатель с переменным сопротивлением :    

Шаговый двигатель с переменным сопротивлением имеет зубчатый ротор из немагнитного мягкого железа. Когда катушка статора находится под напряжением, ротор перемещается так, чтобы между статором и его зубьями был минимальный зазор.

 

Рис. 6: Принципиальная схема двухфазного шагового двигателя с переменным сопротивлением

 

Зубья ротора сконструированы таким образом, что при их совмещении с одним статором они смещаются со следующим статором. Теперь, когда на следующий статор подается питание, ротор перемещается, чтобы выровнять свои зубья со следующим статором. Таким образом, подача питания на статоры в фиксированной последовательности завершает вращение шагового двигателя.

 

 

Рис. 7: Диаграмма, поясняющая работу шагового двигателя с переменным сопротивлением

 

Разрешение шагового двигателя с переменным сопротивлением можно увеличить, увеличив количество зубцов в роторе и число фаз.

 

 

Рис. 8. Рисунок, показывающий способы увеличения разрешения шагового двигателя с переменным сопротивлением

 

 

0005

3.     Гибридный шаговый двигатель :

Гибридный шаговый двигатель представляет собой комбинацию постоянного магнита и переменного сопротивления. Он имеет ротор с магнитными зубьями, который лучше направляет магнитный поток в нужное место в воздушном зазоре.

 

Рис. 9: Конструкция двухфазного гибридного двигателя

 

Магнитный ротор имеет две чашки. Один для северных полюсов и второй для южных полюсов. Чашки ротора сконструированы таким образом, что северный и южный полюса расположены попеременно. Узнайте о гибридном шаговом двигателе.

 

Рис. 10: Схема, показывающая внутреннюю структуру магнитного ротора в гибридном двигателе

 

Гибридный двигатель вращается по тому же принципу, что и обмотки статора.

Рис. 11: Диаграмма, объясняющая работу гибридного шагового двигателя

Типы проводки

9003 моторы. Они могут быть однополярными или биполярными. У униполярного шагового двигателя по две обмотки на фазу. Две обмотки к полюсу могут иметь один общий вывод, т. е. с отводом от центра. Униполярный двигатель, таким образом, имеет пять, шесть или восемь выводов. В конструкциях, в которых общие два полюса разделены, но имеют отвод посередине, двигатель имеет шесть выводов. Если центральные ответвления двух полюсов внутренне короткие, двигатель имеет пять проводов. Восьмивыводной униполярный двигатель обеспечивает как последовательное, так и параллельное соединение, в то время как пятивыводные и шестипроводные двигатели имеют последовательное соединение катушек статора. Униполярный двигатель упрощает работу, так как при их работе нет необходимости реверсировать ток в цепи возбуждения. Их еще называют бифилярными моторами.

 

 

Рис. 12. Схема подключения униполярного шагового двигателя с разными выводами

 

В биполярном шаговом двигателе имеется одна обмотка на полюс. Направление тока должно быть изменено управляющей схемой, поэтому управляющая схема биполярного шагового двигателя становится сложной. Их также называют унифилярными двигателями.

 

Рис. 13. Схема подключения биполярного шагового двигателя с выводами

 

 

 

Шаговые режимы

Существует три шаговых режима шагового двигателя. Шаговый режим относится к последовательности включения катушек статора.

1.      Волновой привод (включение одной фазы)

2.      Полный привод (включение двух фаз одновременно)

3.      Полупривод (включение одной и двух фаз одновременно)

 

1 .     Волновой привод :

В шаговом режиме волнового привода одновременно активируется только одна фаза.

 

Рис. 14. Шаблон шагового режима волнового привода в шаговом двигателе

2.     Полный привод :

В режиме полного привода две фазы подаются одновременно.

 

Рис. 15: Схема шагового режима полного привода в шаговом двигателе

 

3.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *